Engage with year 5, 6, 9, & 10 students in this nationwide STEM programa they compete in fun hands-on activities involving the principles of science, technology, engineering and maths. Share your experience and encourage students. You will work in groups of 2-4 alongside Rotary volunteers. Training material will be provided before the event. ## Program details: Monday 11th Aug, Year 9&10 day, 8am to 3pm Tuesday 12th Aug, Year 5&6 day, 8:30am to 3pm DeakinUniversity, Warrnambool Campus Hopkins River Cafe - Building H Setup/training afternoon Sun 10th Aug from 2:30pm (optional) Tea/coffee station and lunch provided. Register Via: https://forms.gle/kw9E2ggsza2XyUsg9 ElectraCITY ## The Science and Engineering Challenge inspires young people to study STEM | Volunteers will support students in the following activities: | | | | | |---|--|---|--|---| | | BRIDGE | JOB JUGGLE | CONFOUNDING COMMUNICATIONS | ELECTRACITY | | Aim | Design and construct model
bridges to support a trolley
carrying 'gold' ingots across
a gap in the tracks. | A computer science scheduling activity. Students arrange tasks in the most efficient way possible. | Create functional codes to accurately and efficiently send secret messages using pulses of coloured light. | The power is in your hands,
the task is to provide the
lowest-cost electricity to
ElectraCITY's infrastructure. | | Method | Understanding physics and
material properties will help
transform cardboard, balsa,
tape etc. into bridges
capable of bearing dynamic
loads 200 times their weight! | Students will be scored on how fairly they schedule the activities, with minimal downtime, no clashes and the shortest possible critical path. | Using light boxes that transmit red, green and blue light along a fiber optic rod, students can communicate using up to seven colours in unlimited combinations. | Work out the most efficient
pathways while weighing up
the cost of cables and their
resistance and the cost of
leaving some buildings
without power! | | Careers | Civil EngineerSurveyorMathematical modellerArchitect | Data scientistProgrammerSoftware EngineerSystems analyst | Software EngineerMathematical modellerComputer Systems EngineerScientific Analyst | Mathematical modellerEnergy Systems DesignerElectric/comp. engineerData cabling technician | | | 6 6 6 | | | 3 3 3 3 | | | FISH TRAPS | HELTER SKELTER
SHELTER | FLIGHT | WIND TURBINE | | Aim | Use 3D printed rocks to build <u>Fish Traps</u> for various sies of "fish", represented by marbles. | Design and refine 2 towers
to withstand sideways
motion as much as possible
in a simulated earthquake. | Students construct a plane from balsa and fire it from a launching device. | Students construct fan blades
using basic materials to catch
wind provided by an electric
fan. | | Method | Points awarded for meeting the target collection amount in each scenario with a focus on sustainability. | Towers are built using common materials e.g. paper and straws, then tested for strength using small weights under both static and seismic conditions. | The glider will be scored based on the distance travelled, precision of landing and accuracy hitting a target. | Students must consider rotational resistance, balance and stability in their design. Turbines made of cardboard, and wooden sticks around a reusable axle. | | Careers | Civil EngineerEnvironmental EngineerSustainability ScientistMarine Science | Civil EngineerGeologistConstruction ManagerGeophysicist | Civil EngineerAerospace EngineerAircraft EngineerCAD drafter/designer | Renewable Energy EngineerEnergy Systems DesignerMechanical EngineerElectrical Engineer |